Basic Solutions of Diffusion Equation
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1. One dimensional diffusion equation
ou ,0%
ot OX

where a is constant U(t,X) is a function of time t and position X. The initial
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condition 1s

u(0, x) =u,(x) (1b).

From the Fourier transfer of Eq.(1) with respect to the position X, we obtain
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where U (t,&) is the Fourier transfer of u(t,x) as
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Eq.(2) can be obtained easily using a theorem
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The solution of Eq.(2) is
U(t,&) =U, (e " (5).
From the inverse transfer of Eq.(5), we obtain
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can be used. Using another theorem
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Now, the solution of the diffusion equation under a initial condition can be obtained as a
expression of an integral.
Please note That the constant a’ is called diffusion coefficient. So, an expression as
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is used frequently. Here a° is used because the coefficient is limited to be positive.



