Basic Solutions of Diffusion Equation

TAKAHASHI Kunio

(with help of typing by Mr.Nakayama)

1. One dimensional diffusion equation

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \tag{1a}$$

where a is constant u(t,x) is a function of time t and position x. The initial condition is

$$u(0,x) = u_0(x)$$
 (1b).

From the Fourier transfer of Eq.(1) with respect to the position x, we obtain

$$\frac{\partial U}{\partial t} = -a^2 \xi^2 U(t, \xi) \tag{2}$$

where $U(t,\xi)$ is the Fourier transfer of u(t,x) as

$$F(\xi) = \Im\{f\}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) \exp(-i\xi x) dx \tag{3a}$$

$$f(\xi) = \Im^{-1}\{F\}(x) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{+\infty} F(x) \exp(i\xi x) d\xi$$
 (3b).

Eq.(2) can be obtained easily using a theorem

$$F\{f^{(p)}\}(\xi) = (i\xi)^p F\{f\}(\xi)$$
(4).

The solution of Eq.(2) is

$$U(t,\xi) = U_0(\xi)e^{-a^2\xi^2t}$$
 (5).

From the inverse transfer of Eq.(5), we obtain

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U_0(\xi) e^{-a^2 \xi^2 t} e^{i\xi x} d\xi$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_0(\alpha) e^{-i\xi \alpha} d\alpha \right) e^{-a^2 \xi^2 t} e^{i\xi x} d\xi$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_0(\alpha) e^{i\xi(x-\alpha)} e^{-a^2 \xi^2 t} d\xi d\alpha$$
(6).

By a parameter change as $a^2 \xi^2 t = \frac{\eta^2}{2}$, $d\xi = \frac{1}{\sqrt{2a^2 t}} d\eta$ and

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_0(\alpha) e^{-\frac{\eta^2}{2}} e^{i(x-\alpha)\frac{\eta}{\sqrt{2a^2t}}} \frac{1}{\sqrt{2a^2t}} d\eta d\alpha$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_0(\alpha) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{\eta^2}{2}} e^{i\eta\frac{x-\alpha}{\sqrt{2a^2t}}} d\eta \frac{1}{\sqrt{2a^2t}} d\alpha \tag{7}$$

can be used. Using another theorem

$$\Im\left\{e^{-\frac{x^{2}}{2}}\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(e^{-\frac{x^{2}}{2}}\right) e^{-i\xi x} dx = e^{-\frac{\xi^{2}}{2}}$$

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_{0}(\alpha) e^{-(\frac{x-\alpha}{\sqrt{2a^{2}t}})^{2}/2} \frac{1}{\sqrt{2a^{2}t}} d\alpha$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_{0}(\alpha) \frac{1}{\sqrt{2a^{2}t}} e^{-\frac{(x-\alpha)^{2}}{4a^{2}t}} d\alpha$$

$$= \int_{-\infty}^{\infty} u_{0}(\alpha) \frac{1}{\sqrt{4\pi a^{2}t}} e^{-\frac{(x-\alpha)^{2}}{4a^{2}t}} d\alpha$$
(9)

Now, the solution of the diffusion equation under a initial condition can be obtained as a expression of an integral.

(9)

Please note That the constant a^2 is called diffusion coefficient. So, an expression as

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

is used frequently. Here a^2 is used because the coefficient is limited to be positive.