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The jelliumlike free-electron model is used, and the effective one-electron potential veg is ap-
proximated to be the step-function which is shifted to satisfy the neutrality of the charge. The
eigenfunctions can be obtained in analytic form. Although not self-consistent, the calculated dis-
tribution of the electron density is very similar to the self-consistent field (SCF) jellium results by
Lang and Kohn. A simple formula for the surface energy is obtained. The surface energy is given as
a function of the Fermi energy and the work function. The formula suggests that the surface energy
1s sensitive to the Fermi energy and is not sensitive to the work function, i.e., the surface energy is
approximately in proportion to the thfmwer of the Fermi energy. The calculated surface energy
approaches the SCF jellium results by Lang et al. and the structureless pseudopotential results by

Perdew for small electron density.

I. INTRODUCTION

Simple sp-bonded metals are nearly-free-electron sys-

tems. The metals are often described theoretically by the
jelllum model, for a systematic understanding of mate-
rial properties at the low-electron-density limit, although
some corrections are required to obtain realistic results
at higher density (r, < 4).! Perdew, Tran, and Smith?
propose perhaps the simplest model viable for all r, by
using a structureless pseudopotential model.

This paper is based on the general theory of the in-
homogeneous electron gas. Consider the case with semi-
infinite positive background. The total energy per va-
lence electron in the bulk is written as

H = H + ch + Hﬂthera (1)

where Hj is the kinetic energy of the electron and H,.
is the exchange and correlation contributions. H ipe, in-
cludes the external potential and the electrostatic poten-
tial energy in the theory by Kohn and Sham.® In the the-
ory by Perdew, Tran, and Smith,? the H,iper includes the
average Madelung energy, the band-structure energy, and
the non-Coulombic contribution of the pseudopotential.
In any approximation, an effective one-electron potential
1s defined and the barrier height of the potential can be
obtained as a function of the interaction energies stated
above.

In turn, if the work function @ is given as an empirical
parameter, the effective potential height can be given by
® 4 ep, where ep is the Fermi energy. Furthermore, as-
suming that the effective potential can be approximated

to a step function, the electronic wave functions are writ-
ten in simple analytic form. In Sec. III, we present a

comparison between the results and the self-consistent
field (SCF) results by Lang and Kohn.! The results are
not self-consistent. However, one can obtain the more
simplified formula on the trend of the surface energy.

The simplicity of this approximation proposes a rough
understanding of the relation between the surface energy
Ys, the Fermi energy €, and the work function ®.
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II. A SHIFTED STEP-POTENTIAL
APPROXIMATION

The jelliumlike free-electron model with shifted step
potential is used. If the approximation of Lang and
Kohn' would be used (also see Ref. 4), the effective one-
electron potential energy for a state would be defined
self-consistently from the electron number density.

In order to simplify and obtain the analytic form of
the electronic eigenfunctions, the effective potential v g is
approximated to be the step function as shown in Fig. 1.
The « is defined so that the electronic distribution obeys
the neutrality condition. The potential energy is

0 (z<a)
)=y (<)

a <

(2a)

’

V=€crp+ o, (Qb)

where V' 1s the total barrier height, assuming that the
Fermi energy e and the work function ® are known.

Now, 1t is not necessary that the one-electron poten-
tial be written as the functional of the electron density.
We take the assumption that the effective one-electron
potential can be written as Eq. (2) on the basis of one-
electron approximation. The exchange, correlation, and
other contributions are included in the v.g.

The solution of the wave equation, |

Potential energy Vu¢s

FIG. 1. Relation between the.electron work function &,

the Fermi energy er, and the effective one-electron potential
energy.
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HY =V, (3a) —+/&sin(2rkX 46 X < 0)
AT, = 5 sin( ) ( )
2 | , & rexp(—2rXvr —«k?) (0<X),
H = V2 + veg() , 3b
2m 7(2) (3b) where
can be written following Lang and Kohn:! r— o k V
X = )\ 5K*=k_"':r=—! (8)
U= AT, U, U, = AV, exp(—ik,y — ik,z),  (4) F F °F
‘ and
T { sin [k{x — a) + 6(k)] (z < a) (5)
0 (-’B = 00) , N 5(7‘, h:) = arctan ( " ) - (9)

VT — K2
where the eigenfunction [Eq. (5)] and its differential .
should be continuous at the singularity z = a, 1.e., The coefficients of Eq. (7) are defined from the electron

density of the bulk. The electron density is

V,.(a—) =TV (at), (6a) 3
6‘1’-1; . alI,:n _ n(ﬂ:) — '_FKI(X1 T) y (10)
Now, the solution of Eq. (3a) can be written in analytic where the 3&1‘:&5 is the bulk density. The relative electron
form, density K,(X,r) is the function of X and r [see Eq. (8)],
- < |
1
%/ (1 — k?)sin®*(27xX + 8)dr (X < 0)
}C]_(X,T') — _11 (11)

2 [ (- R exp(-aX V7~ R)as (05 X).
-1

The surface energy v, of a crystal is the energy required, per unit area of new surface formed, to split the crystal
in two along a plane. v, can be calculated from the total energy change in the splitting process.

The total energy per valence electron is the observable of the Hamiltonian. By using the Hamiltonian in Eq. (3a),
the distribution of the energy density is written

yAY: . 3
Penergy — (2,”-)3 /k;phere VIHY a7k
R k3,
B IOWZmICZ(X!T) * (12
where
1
%/ (1 — &*)sin’(27kX + 8)dk (X <0)
Cy(X,r) = - (13)
‘4_51—' (1-— rs:4)ﬁ:2 exp(—47TX\/'f' - k¥)dr (0 < X).
~1
The total energy is the integral of Eq. (12) over the space. - T

So, the surface energy is given as

1.0 rs =3 -
r =2.35
th 4 =
Y8 = = Ke(r) (14) (=V/ep)
omTm

—
n

— :Shifted step
potential

—- :SCF jellium .
by Lang et.al.

Relative electron density

K.(r) = /_Q/AF(ICZ —1)dX + /m KodX . (15)

— 00 —a/AF

&
-

. . i SR NPV B S
As shown in Eq. (14) with Eqgs. (8) and (2b), the surface —.0 -05 00 035 1.0

energy 7, is expressed as a function of Fermi energy ep Distance x/Ag
and work function . Exchange, correlation, and other FIG. 2. Electron-density distribution near metal surface for
contributions are obscurely enclosed in these material pa- r, = 5,7 = 2.35 (the solid line), which corresponds to SCF

rameters. jellium result by Lang and Kohn (the broken line).
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FIG. 3. The calculated result of the surface energy coeffi-

cient as a function of only (= 5‘;%3)

ITI1. CALCULATED RESULTS AND DISCUSSION

Equation (11) gives the relative electron density as a
function of X and r [see Eq. (8)|. A calculated result of
the distribution of the relative electron density is plot-
ted in Fig. 2 (the solid line). The SCF jellium result by
Lang and Kohn also is plotted (the broken line). They
are similar to each other, although the eigentunction is
not self-consistent. Friedel oscillations also can be rep-
resented. The surface energy is sensitive to the electron
distribution. This similarity may give a good approxima-
tion for the surface energy.

The coefficient of the surface energy [Eq. (15)] is a func-
tion of only r which means the barrier height normalized
by the Fermi energy [see Eq. (8)]. The coefficient K,
1s plotted in Fig. 3 as a function of r. As for common
metals, the barrier height parameter r takes the value

from 1.35 to 2.2. The coeflicient of the surface energy is,
therefore, 3.35 x 1072 £+ 3%, i.e.,

hkp®

YL

Vs = 3.35 x 107° + 3% . (16)

The surface energy calculated from Eq. (16) is plotted
in Fig. 4. It is compared with the experimental values?
extrapolated to 0 K, the SCF jellium result by Lang and
Kohn,! and the structureless pseudopotential result by
Perdew, Tran, and Smith.? The result of Eq. (16) ap-
proaches the results by Perdew, Tran, and Smith and
Lang and Kohn for large r,. This suggests that the
shifted step potential is one of the good approximations
at the low electron density limit. The +3% may explain
the fact that the surface energy is sensitive to ex and it
is not sensitive to ®. This would mean that the surface

2
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Density parameter rg (Bohr)

FI1G. 4. Surface energy calculated here by using the shifted

step potential compared with experimental value extrapo-
lated to 0 K, the SCF jellium result by Lang and Kohn, and

the structureless pseudopotential result by Perdew, Tran, and
Smith.

energy is in proportion to the fourth power of the Fermi
energy. wove vector g

Exchange, correlation, and other contributions are ob-
scurely enclosed in e and @, and the eigenfunctions ob-
tained [Eq. (7)] are not self-consistent. However, the elec-
tron density is very similar to the SCF jellium result by
Lang and Kohn. This approximation can propose a rough
understanding of the relation between the surface energy
v,, the Fermi energy g, and the work function ®.

IV. CONCLUSION

This paper is based on a simple approach to the elec-
tronic structure of semi-infinite jellium. The effective po-
tential v.g 1s approximated to be the step function which
is shifted to give the charge neutrality. The eigenfunc-
tlons can be obtained in analytic form. They are not
self-consistent. However, the electron density distribu-
tion calculated is very similar to that of the SCF jellium
result. The calculated surface energy approaches the re-
sult by Perdew, Tran, and Smith and Lang and Kohn
for the small electron density. The simplicity of this ap-
proximation proposes a rough understanding of the re-
lationship between the surface energy and the material
parameters at the low electron-density limit.
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